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A statistical index Ras is proposed in order to monitor the

overall signal-to-noise ratio in an anomalous scattering data

set. In this approach, symmetry-equivalent re¯ections are

merged and grouped into centric and non-centric subsets.

Re¯ections in the centric subset, which in theory should be

equal, are used to estimate the noise level in the data. This

approach differs from that used by most data-processing

programs, in which the centric re¯ections are merged and

averaged. By preserving the differences in centric re¯ections

during data processing, an internal measure of the noise level

can be estimated and used to analyze the quality of the

anomalous signal in the data. An index Ras is de®ned as the

ratio of the average Bijvoet difference of merged acentric

re¯ections to merged centric re¯ections. Test results on a

variety of data show that Ras has good correlation with the

capability to determine the anomalous scattering substructure

from the data. Ras can also be useful in monitoring the quality

of the data in terms of the data-collection strategy, instrument

settings and data-processing software used. Ras analysis has

been implemented in the program 3DSCALE as part of a

data-processing program suite that is under development in

our laboratory.
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1. Introduction

Although ®rst demonstrated by Hendrickson & Teeter (1981)

and Wang (1982, 1985), protein-structure determination using

the weak anomalous scattering signal from elements such as

sulfur that are naturally present in most proteins has attracted

little attention until recently (Wu et al., 1999, 2001; Dauter et

al., 1999, 2002; Liu et al., 2000; Gordon et al., 2001; Li et al.,

2002). Common to these studies is the use of single-

wavelength anomalous scattering (SAS or SAD) data

recorded at or beyond the characteristic Cu K� wavelength

(� = 1.5418 AÊ ).

Compared with traditional MAD (multi-wavelength

anomalous dispersion; Hendrickson, 1985) and MIR (multiple

isomorphous replacement; Blow & Crick, 1959; Dickerson et

al., 1961; North, 1965; Matthews, 1966) methods, the SAS

method using S atoms as phasing probes should be more

economical and more ef®cient as the necessity of preparing

selenium-labeled protein or the preparation of heavy-atom

derivatives is avoided. This approach, once re®ned, could have

signi®cant impact in the large-scale macromolecular structural

analysis associated with structural genomics ventures.

The Bijvoet ratio for light atoms such as phosphorus and

sulfur is small, of the order of 1% for most protein data (see

Ramagopal et al., 2003, and references therein). Thus, an

accurate measure of the SAS signal and a means of monitoring

the noise level in the data are essential for successful structure
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determination from sulfur or phosphorous anomalous scat-

tering data.

Traditionally, the quantity Rsym (also called Rmerge),

Rsym�I� �
P

h

P
i

jI�h; i� ÿ hI�h�ij=P
h

P
i

I�h; i�; �1�

is used for describing X-ray diffraction quality (Stout &

Jensen, 1968; Blundell & Johnson, 1976; McRee, 1993; Drenth,

1994; Ladd & Palmer, 1994). Here, the summation
P

h runs

over the unique re¯ections,
P

i runs over all the symmetric

equivalents of h and hI(h)i is the statistical average. Unfor-

tunately, Rsym thus de®ned has proved to be a poor criterion

for assessing the quality of X-ray data (Diederichs & Karplus,

1997; Weiss & Hilgenfeld, 1997; Weiss, 2001), since it generally

increases (gets worse) as the data quality improves with

increasing redundancy. In recent years, a number of alter-

native measures have been suggested; these include Rmeas (or

Rr.i.m.), Rmrgd-F and Rp.i.m. (Diederichs & Karplus, 1997; Weiss

& Hilgenfeld, 1997; Weiss et al., 1998; Weiss, 2001).

Rmeas �
P

h

�m=�mÿ 1��P
i

jI�h; i� ÿ hI�h�ij=P
h

P
i

I�h; i�: �2�

Rmeas (or Rr.i.m.) overcomes the problem of increasing Rsym

with increasing data redundancy by including a correction `m'

for redundancy. Rmrgd-F, by assessing the quality of the reduced

data, enables a direct comparison with the re®nement indices

Rcryst and Rfree (Kleywegt, 2000). Rp.i.m., the so-called preci-

sion-indicating merging R index, describes the precision of the

averaged measurement (Weiss et al., 1998). These improved R

indices provide more reliable indications of the overall data

quality of X-ray diffraction experiments and should be used in

place of Rmerge as indicators of overall X-ray data quality.

Another generally used statistical parameter for data-quality

assessment is hI/�(I)i, which describes the average strength or

signi®cance of the observed intensities. However, none of the

above statistical parameters have direct correlation with the

anomalous signal in an X-ray diffraction data set. Thus, none

of them can practically serve as an ef®cient indicator of the

data quality in terms of anomalous signal or the anomalous

signal-to-noise ratio.

Currently, several methods have been proposed to evaluate

or estimate the anomalous signal strength; these include Ranom

(the Bijvoet difference ratio), �, the �R plot (normal prob-

ability plot) and �2.

The Bijvoet difference ratio is de®ned as

Ranom � hjF��h� ÿ Fÿ�h�ji=hF�h�i: �3�
For protein crystals, Ranom can be estimated as (2Na/Np)1/2f 00=
Zeff (Hendrickson & Teeter, 1981; Dauter et al., 1999, 2002) or

more precisely as (2Na/Np)1/2f 00/feffCAexp[�B(sin�/�)2] (Shen

et al., 2003). Ranom describes the average ratio of Bijvoet

difference to structure factor. The error-correction and scaling

program PROSCALE (Fu et al., 2000) uses another parameter

�, which is de®ned as the average ratio of Bijvoet differences

in intensity (�I) and the standard deviation of the intensity

[�(I)] calculated using acentric re¯ections or all re¯ections,

� � hj�Ij=��I�i: �4�

Both Ranom and � describe the averaged Bijvoet differences in

a given X-ray diffraction data set, which can be used as an

indicator of the anomalous signal level. The reliability of � is

dependent on the accuracy of evaluation of �(I) and can be

improved by the data-collection strategy used (Popov &

Bourenkov, 2003). However, � as de®ned above is not really

an anomalous signal-to-noise ratio because �(I) does not

represent the noise in measured Bijvoet differences. Without

the evaluation of the noise level in the Bijvoet differences,

Ranom and � can be misleading.

An alternate approach for estimating the anomalous signal

in a data set is the �R plot (normal probability plot) of

anomalous differences �I/�(I) suggested by Howell & Smith

(1992) and implemented in the scaling program SCALA

(Evans, 1993) to evaluate anomalous signal. Finally, �2

statistics have been used in estimating anomalous signal

strength by SCALEPACK (Otwinowski & Minor, 1997) with

the anomalous ¯ag turned on and off.

While both the �R plot and �2 can be used to identify data

with anomalous signal, they do not provide a quantitative

indication of the anomalous signal level. Thus, an index that

directly measures the anomalous signal-to-noise ratio is

needed. XPREP (Sheldrick, 2000) outputs two different sets

of anomalous signal-to-noise ratios (denoted here as SN1 and

SN2). Test results show that the proposed Ras index de®ned in

x2 is a better indicator of the capability of a data set to solve

the anomalous scatterer substructure than either SN1 and SN2.

These results will be discussed in more detail in x3. We

propose that Ras be used as an informative index in data-

reduction programs to monitor the anomalous signal-to-noise

ratio and have implemented this approach in the program

3DSCALE as part of a data-processing program suite

currently under development in our laboratory.

2. Methods

For protein crystals, which always belong to a non-centro-

symmetric space group, Friedel's law is not obeyed in the

presence of anomalous dispersion, i.e. I(h) 6� I(ÿh) for certain

classes of re¯ections. However, there exists for most non-

centrosymmetric space groups (with the exception of P1, P3,

P31, P32 and R3) a class of re¯ections that are always centro-

symmetric. For these centrosymmetric re¯ections, I(h) = I(ÿh)

is still obeyed. The Bijvoet difference, the intensity differences

between re¯ections that are space-group symmetry

equivalents to the two members of a Fridel pair, will be zero

[�Ic = I(+) ÿ I(ÿ) = 0] for centric re¯ections and non-zero

[�Ia = I(+) ÿ I(ÿ) 6� 0] for acentric re¯ections. For the

following discussion and in our calculations, all I(+) and I(ÿ)

represent merged re¯ections according to space-group

symmetry. In principle, the accuracy of I(+) and I(ÿ) should

improve with increased data redundancy (which we de®ne as

the total number of observations, including symmetry-related

ones, per unique re¯ection). This expectation together with

others will be tested in x3.



Strictly speaking, �Ic will not be zero owing to experi-

mental and counting-statistics errors. Based on this, we

suggest that �Ic can be used as an internal indicator to

estimate the noise level in the data from non-centrosymmetric

crystals which have centric re¯ections. Conversely, �Ia,

calculated using only the acentric re¯ections, should give an
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Table 1
Data statistics.

The values in parentheses for the �a, �c and Ras columns are the in-shell values that were calculated with re¯ections in the listed resolution shell. All other values
were calculated with re¯ections up to the resolution shell listed. CC is the correlation coef®cient of the top solutions from SHELXD, with two values CC/all and
CC/weak (in parentheses).

(a) Statistics from 3DSCALE and SHELXD for the 60� data set.

Resolution (AÊ ) Rsym (%) Completeness (%) Redundancy hI/�(I)i �a �c Ras CC/all (CC/weak)

4.78 2.48 98.18 6.32 83.31 4.34 (4.34) 2.24 (2.24) 1.94 (1.94) 37.5 (5.4)
3.76 2.35 99.08 6.52 84.57 3.74 (3.20) 1.99 (1.61) 1.88 (1.99) 39.7 (12.6)
3.28 2.39 99.00 6.61 78.57 3.28 (2.44) 1.92 (1.67) 1.71 (1.46) 36.0 (13.1)
2.97 2.44 99.25 6.64 72.43 2.92 (1.93) 1.79 (1.19) 1.63 (1.61) 33.7 (14.9)
2.75 2.52 98.76 6.67 65.68 2.69 (1.81) 1.73 (1.35) 1.55 (1.33) 29.2 (13.0)
2.58 2.60 98.78 6.68 60.39 2.48 (1.48) 1.64 (0.99) 1.51 (1.49) 29.3 (12.7)
2.45 2.67 98.95 6.50 55.45 2.33 (1.42) 1.59 (1.20) 1.46 (1.18) 25.8 (11.9)
2.34 2.71 98.97 6.17 50.85 2.20 (1.28) 1.59 (1.60) 1.38 (0.80) 25.3 (10.2)
2.24 2.75 97.64 5.85 46.66 2.08 (1.09) 1.56 (0.89) 1.33 (1.23) 24.7 (8.2)
2.15 2.76 92.67 5.52 43.93 2.00 (0.83) 1.56 (1.00) 1.28 (0.83) 21.2 (7.6)

(b) Statistics from 3DSCALE and SHELXD for the 120� data set.

Resolution (AÊ ) Rsym (%) Completeness (%) Redundancy hI/�(I)i �a �c Ras CC/all (CC/weak)

4.78 2.85 98.18 12.63 105.90 5.36 (5.36) 2.03 (2.03) 2.64 (2.64) 43.8 (19.2)
3.76 2.79 99.09 13.05 107.33 4.40 (3.57) 1.97 (1.87) 2.23 (1.90) 45.4 (18.3)
3.28 2.82 99.00 13.20 99.93 3.85 (2.82) 1.87 (1.53) 2.06 (1.84) 41.0 (16.1)
2.97 2.89 99.28 13.28 92.45 3.43 (2.27) 1.75 (1.22) 1.96 (1.85) 38.5 (18.7)
2.75 2.97 99.27 13.32 84.41 3.11 (1.91) 1.67 (1.18) 1.86 (1.62) 34.0 (14.6)
2.58 3.06 98.89 13.35 77.54 2.85 (1.60) 1.60 (1.04) 1.78 (1.54) 31.8 (12.1)
2.45 3.14 99.05 13.10 71.34 2.67 (1.64) 1.56 (1.21) 1.71 (1.36) 30.2 (12.0)
2.34 3.19 99.00 12.33 65.41 2.49 (1.26) 1.51 (0.95) 1.65 (1.33) 28.7 (10.8)
2.24 3.22 98.11 11.54 59.65 2.34 (1.20) 1.47 (0.77) 1.59 (1.56) 27.9 (10.1)
2.15 3.24 95.89 10.66 55.12 2.22 (0.86) 1.45 (0.77) 1.53 (1.12) 27.4 (9.2)

(c) Statistics from 3DSCALE and SHELXD for the 180� data set.

Resolution (AÊ ) Rsym (%) Completeness (%) Redundancy hI/�(I)i �a �c Ras CC/all (CC/weak)

4.78 2.95 99.29 18.89 109.51 5.71 (5.71) 1.58 (1.58) 3.60 (3.60) 44.7 (15.2)
3.76 2.93 99.64 19.50 110.94 4.52 (3.47) 1.57 (1.56) 2.87 (2.23) 47.1 (26.1)
3.28 3.00 99.76 19.72 104.46 3.90 (2.77) 1.55 (1.46) 2.52 (1.89) 44.1 (21.9)
2.97 3.07 99.58 19.83 98.01 3.55 (2.54) 1.50 (1.29) 2.37 (1.96) 40.9 (22.0)
2.75 3.16 99.67 19.91 90.60 3.26 (2.22) 1.48 (1.37) 2.20 (1.62) 36.7 (17.6)
2.58 3.25 99.56 19.94 84.15 3.04 (1.95) 1.46 (1.28) 2.09 (1.53) 35.2 (17.0)
2.45 3.33 99.32 19.42 78.07 2.89 (2.04) 1.45 (1.40) 1.99 (1.45) 32.2 (15.0)
2.34 3.38 99.41 18.37 71.93 2.71 (1.51) 1.43 (1.24) 1.89 (1.22) 31.1 (15.9)
2.24 3.42 98.72 17.19 65.81 2.56 (1.40) 1.41 (1.01) 1.82 (1.39) 28.6 (14.3)
2.15 3.44 97.01 15.84 60.61 2.41 (0.90) 1.40 (1.20) 1.71 (0.75) 28.3 (13.7)

(d) Statistics from 3DSCALE and SHELXD for data set 2.

Resolution (AÊ ) Rsym (%) Completeness (%) Redundancy hI/�(I)i �a �c Ras CC/all (CC/weak)

4.78 3.80 98.02 19.41 85.53 4.62 (4.62) 1.84 (1.84) 2.52 (2.52) 43.3 (16.8)
3.76 3.23 98.02 20.07 86.97 3.77 (3.01) 1.68 (1.35) 2.24 (2.24) 38.7 (20.7)
3.28 3.28 98.58 20.31 80.15 3.14 (1.97) 1.64 (1.42) 1.92 (1.39) 36.7 (18.5)
2.97 3.37 98.50 20.48 73.66 2.77 (1.75) 1.61 (1.34) 1.72 (1.30) 34.2 (17.6)
2.75 3.52 98.80 20.56 66.56 2.51 (1.54) 1.57 (1.20) 1.61 (1.28) 31.8 (17.0)
2.58 3.70 99.00 20.60 60.55 2.32 (1.41) 1.60 (1.75) 1.45 (0.81) 28.4 (13.3)
2.45 3.84 98.93 19.94 55.01 2.18 (1.38) 1.58 (1.37) 1.38 (1.01) 22.8 (11.6)
2.34 3.94 98.44 18.81 50.31 2.06 (1.19) 1.59 (1.57) 1.30 (0.76) 24.1 (12.8)
2.24 4.02 98.62 17.51 45.76 1.95 (1.15) 1.59 (1.56) 1.23 (0.74) 22.2 (10.3)
2.15 4.07 98.29 16.17 42.03 1.89 (1.19) 1.57 (1.14) 1.20 (1.04) 14.0 (5.68)
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estimate for both the anomalous signal and noise in the data;

that is,

�Ia � signal� noise; �5�

�Ic � noise: �6�
Similarly, the � term (4) can be recast to yield the following

two parameters that can be calculated during data processing,

�a � hj�Iaj=��I�i; �7�

�c � hj�Icj=��I�i: �8�
Here, �a and �c are calculated by using acentric re¯ections

and centric re¯ections, respectively. �a represents the

measured Bijvoet difference of merged acentric re¯ections,

which contains both signal and noise. �c represents the

Figure 1
Red, dark blue and green lines represent 60, 120 and 180� data sets from the good-quality Zn-free insulin crystal (crystal 1), respectively. Light blue lines
represent data 2 from the moderate-quality Zn-free insulin crystal (crystal 2). The lines with open markers represent �a. The lines with solid markers
represent �c. (a) A plot of �a and �c versus resolution for the four data sets. (b) A plot of Ras values versus resolution for the four data sets. (c) A plot of
in-shell Ras versus resolution shell for the four data sets.

measured Bijvoet difference of merged centric re¯ections,

which comes from noise alone.

As a ®rst approximation, if one assumes that the noise level

in the same data set is the same for the acentric and centric

re¯ections within the same resolution shell, then we can de®ne

Ras � �a=�c: �9�
While �a gives the measured magnitude of the average signal

in the data, Ras provides a measurement of the signi®cance of

�a in terms of the measured noise level, �c, in the data. Here,

Ras can be simply regarded as the measured anomalous signal-

to-noise ratio. The larger the Ras value, the stronger the

anomalous signal, while Ras values �1 would indicate a lack of

anomalous signal in the data set. From this it is easy to see that

without the knowledge of �c, the value of �a alone is not

adequate to assess the anomalous signal strength.

Two alternate approaches were also explored. In these

approaches, (7) and (8) were rede®ned as follows:

�a � hj�Iaji;

�c � hj�Icji
or

�a � hj�Iaj=�2�I�i;

�c � hj�Icj=�2�I�i:
However, based on the limited tests described below it

appears that (7) and (8) generate a better indicator Ras of the

anomalous signal-to-noise ratio.

The estimated anomalous scattering signal �s after

correcting for noise can be de®ned as

�s � ���a�2 ÿ ��c�2�1=2: �10�



�s can be used to replace �a in (9) to calculate another

parameter R0as that equals (R2
as ÿ 1)1/2.

The Ras index described above has been incorporated into

3DSCALE (Fu, unpublished work), a data-scaling and error-

correction program for area-detector data that also uses three-

dimensional error models (Fu et al., 2000).

3. Tests and results

3.1. Ras versus data redundancy

From a theoretical point of view, �c or noise level should

decrease with increased redundancy if the additional obser-

vations per unique re¯ections do not introduce additional

systematic error into the data. In the case of �a, since it is a

combination of both signal and noise, it is dif®cult to antici-

pate how this value would change with redundancy. To

investigate how Ras responds to changes in data redundancy,

we used three sets of data collected with increasing data

redundancy (1�, 2� and 3�) from the same crystal. Two

Zn-free insulin crystals (space group I213; a = 77.95 AÊ ) of

different diffraction quality (good and moderate) were chosen

for the analysis. The data from the good-quality crystal

(crystal 1) were collected to 2.15 AÊ resolution (lower limit

39 AÊ ) using a Bruker Proteum-R CCD (also known as Smart

6000) detector mounted on a Rigaku RUH3R rotating-anode

generator using 5 kW focused (MSC/Blue confocal optics)

Cu K� X-rays. A total of 900 0.2� oscillation images were

recorded using an exposure time of 1 min. The intensities were

indexed and integrated using the PROTEUM data-reduction

package (Bruker). Data were scaled and merged using

3DSCALE. Three data sets representing 60, 120 and 180� of

crystal rotation were generated by scaling 1±300, 1±600 and

1±900 data frames respectively, which are denoted hereafter as

the 60, 120 and 180� data sets.

Data from the moderate-quality crystal (crystal 2) were

collected to 2.15 AÊ (lower limit 39 AÊ ) using the same Bruker

Proteum-R CCD detector mounted on a Rigaku FRD

generator with Rigaku/MSC HiRes2 optics. A total of 720

0.25� oscillation images were recorded with an exposure time

of 30 s. As above, PROTEUM and 3DSCALE were used to

process the data (denoted hereafter as data 2). For each of the

above four data sets, values for �a, �c and Ras were calculated

using ten different resolution shells (see Table 1).

For crystal 1, both the 120 and 180� data show a similar �a

distribution versus resolution, with the more highly redundant

180� data set having slightly higher �a values and much lower

�c values. The 60� data set, however, has much lower �a

values with higher �c values. From the Ras plot (Fig. 1b), it is

interesting to note that there is a clear differentiation between

the 60, 120 and 180� data that correlates well with what one

would expect in terms of signal strength or data quality with

increasing redundancy. In addition, comparing the Ras values

for the 60, 120 and 180� data sets collected from the same

`good' crystal, it can be seen that all data sets contain anom-

alous signal that is clearly above the noise level.

If one looks at the plot of �a versus resolution (Fig. 1a), one

would assume that data 2 is worse than all the other three sets.

However, if one looks at Ras, which accounts for the noise in

the data (�c), which differs signi®cantly from the theoretical

value of 0.0, a different picture emerges. According to Ras, the

quality of data 2 is worse than that of either the 120� or the

180� data sets, but it is somewhat better than that of the 60�

data set at resolution higher than 2.75 AÊ . This conclusion is

supported by the correlation coef®cients observed from

SHELXD (Sheldrick & Schneider, 2001) described in the next

section. Fig. 1(b) clearly shows that the signal-to-noise ratio in

data 2 drops off much quicker with resolution than those of

the three data sets from crystal 1, indicating that crystal 2 is

not as good as crystal 1. The redundancy in data 2 is about

three times that of the 60� data set. Fig. 1(b) indicates that it is

possible to produce a set of data from a `not-so-good' crystal

with a better signal-to-noise ratio than that of a `good' crystal

simply by increasing the redundancy of the data set. This

possibility is certainly in agreement with the intuition of most

experimentalists, but it can now be monitored quantitatively

by Ras.

Ras can also provide information on the `useful' resolution,

in terms of anomalous signal, of the data set. If one assumes

that an Ras value above a certain value, say 1.5, is needed for

successful phasing, then a data cutoff of 2.58 AÊ is the `useful'

resolution for both the 60� and data 2 data, while data cutoffs

of 2.15 AÊ and beyond 2.15 AÊ (the data limit) are the `useful'

resolutions for the 120� and 180� data sets, respectively. Ras

can thus serve as a tool for monitoring the change of `useful'

data resolution with re¯ection redundancy.

Analysis of in-shell Ras values versus resolution (Table 1 and

Fig. 1c) reveals that the anomalous signal-to-noise ratios

improve more signi®cantly with the 100% increase in redun-

dancy in going from the 60� to the 120� data set than the 50%

increase in redundancy observed in going from the 120� to the

180� data set. Again, this observation is in agreement with

correlation coef®cient from SHELXD and is what one would

expect.
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Figure 2
Plot of correlation coef®cients CC/all of the top solutions from SHELXD
versus resolution for the four data sets. Red, dark blue, green and light
blue lines represent 60, 120 and 180� data sets and data 2, respectively.
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Table 2
Signal-to-noise ratios from XPREP.

SN1 denotes the ratio based on input � values and SN2 the ratio on variances
of F+ and Fÿ as described in the output of XPREP.

60� data set 120� data set 180� data set Data set 2

Resolution shell SN1 SN2 SN1 SN2 SN1 SN2 SN1 SN2

5.0 2.72 2.83 3.33 3.06 3.49 3.45 2.73 3.13
4.0 2.30 2.34 2.67 2.40 2.61 2.53 2.18 2.92
3.6 1.68 1.75 1.95 1.85 1.76 1.67 1.31 1.72
3.4 1.57 1.87 1.91 2.02 1.90 1.92 1.30 1.86
3.2 1.46 1.66 1.66 1.76 1.80 1.90 1.23 1.79
3.0 1.28 1.68 1.50 1.79 1.74 2.03 1.16 1.73
2.8 1.17 1.64 1.25 1.61 1.48 1.85 0.95 1.43
2.6 1.04 1.44 1.11 1.44 1.33 1.67 0.94 1.31
2.4 0.97 1.44 1.04 1.46 1.27 1.67 0.86 1.17
2.2 0.79 1.34 0.78 1.28 0.89 1.36 0.89 1.07

3.2. Ras versus the ability of the data to produce the
anomalous scatterering substructure

This test was designed to evaluate the usefulness of Ras as an

index for judging the data quality with respect to its usefulness

in producing the anomalous scatterering substructure, the ®rst

step in the SAS or MAD structure determination.

The correlation coef®cients (CC/all and CC/weak)

produced by SHELXD were used for the analysis. The

correlation coef®cients are associated with the sets of heavy-

atom sites found by the program and provide statistical esti-

mates of the quality of the heavy-atom solution and by

inference the strength of the anomalous scattering signal in

the data. Our previous experience with SHELXD indicates

that the correlation coef®cients are reliable indicators for the

certainty of the heavy-atom site(s) located by the program and

are useful indicators for the strength of the anomalous scat-

tering signal in the data, i.e. the larger the correlation coef®-

cients the higher the certainty of the heavy-atom site and the

larger the signal in the data.

SHELXD was used with 200 trials per run to determine the

sulfur anomalous substructure (three disul®des) with all the

above four data sets at ten different resolutions. The corre-

lation coef®cients of the best solutions for the given resolu-

tions and data sets are listed in Table 1 and plotted in Fig. 2. As

can be seen from Fig. 2, the Ras predictions are in good

agreement with the SHELXD correlation coef®cients,

including the comparison of data 2 with the 60� data from

crystal 1 as discussed previously. Thus, Ras can serve as an

indicator of the ability of a data set to produce the anomalous

scatterering substructure, a critical step in successful SAS or

MAD structure determination.

Figure 3
Plots of in-shell signal-to-noise ratios from XPREP and �a values versus resolution shell. Red, dark blue, green and light blue lines represent 60, 120 and
180� data sets and data set 2, respectively. (a) SN1, a signal-to-noise ratio based on input � values from XPREP, versus resolution shell. (b) SN2, a signal-
to-noise ratio based on variances of F+ and Fÿ from XPREP, versus resolution shell. (c) �a versus resolution shell.



3.3. Ras versus the anomalous signal indicators used in XPREP

This test was designed to compare Ras with the two indi-

cators of anomalous scattering signal-to-noise ratio produced

by XPREP (Sheldrick, 2000). For the comparison, the

unmerged data after error correction and scaling by

3DSCALE were written out for each of the above four data

sets and analyzed by XPREP. XPREP produces two indices,

denoted here as SN1 and SN2, corresponding to input � and

variance of the Bijvoet differences, respectively. The resulting

SN1 and SN2 values from the analysis are listed in Table 2 and

plotted in Figs. 3(a) (SN1 versus resolution shell) and 3(b)

(SN2 versus resolution shell). The SN1 plot (Fig. 3a) shows that

data 2 has a signi®cantly lower signal-to-noise ratio than the

other three data sets. This observation does not agree with Ras

(Fig. 1b) and the correlation coef®cients from SHELXD

(Fig. 2). In general, the SN1 plot (Fig. 3a) looks very similar to

the �a versus resolution shell plot (Fig. 3c). Although the

exact de®nition of SN1 was not found in the literature, its

apparent similarity to �a suggests that it is closely related to

�a. If this is true, SN1 is not a good indication of signal-to-

noise since �a is a measure of signal plus noise as discussed

earlier.

In addition, SN2 (Table 2 and Fig. 3b), in our opinion also

did not adequately predict the anomalous signal-to-noise ratio

from our test data. Fig. 3(b), for example, suggests that the

improvement of anomalous signal in going from the 60� to the

120� data set (100% increase in redundancy) is less signi®cant

than 50% increase in redundancy produced in going from the

120� to the 180� data set. This is not in agreement with either

the Ras analysis or the SHELXD results (Fig. 2). Also, SN2

predicts that anomalous signal in data 2 is as good as or better

than the 120� data to a resolution of 3.0 AÊ . Again, this runs

contrary to both the Ras analysis and SHELXD results, which

indicate that the anomalous signal in data 2 is similar to that

observed for the 60� data. Thus, both SN1 and SN2, the only

other two quantities that have been suggested as indicators of

the anomalous signal-to-noise ratio in data, failed to correlate

well with the SHELXD results from our test data. Therefore,

we believe that the proposed Ras index will serve to comple-

ment existing indices in data-reduction programs for detecting

and monitoring the anomalous scattering signal-to-noise in the

data.

3.4. Ras value versus production of an interpretable electron-
density map

In order to show at what minimum Ras level an interpretable

electron-density map can be obtained by SAS phasing, we

used the 60� data set to 2.58 AÊ as a test. SHELXD was used to

®nd the anomalous scattering substructure (in this case three

disul®de superatoms). ISAS2001 (Wang, 1985) was then used

to resolve the SAS phase ambiguity and to produce the

experimental phases that were used to produce the inter-

pretable electron-density map shown in Fig. 4. This result

con®rms the validity of the Ras approach and suggests that an

Ras value of 1.5 is suf®cient for the production of an inter-

pretable map from the test data. It is certainly possible that Ras

values lower than 1.5 are suf®cient to produce interpretable

maps. However, more tests using a variety of data will be

needed to con®rm this. Tests with other applications of Ras will

also be continued.

4. Discussion

The reliability of the measured anomalous signal is closely

related to the noise level in the measurement of the data,

especially when the signal is very weak, as in the case of P-, S-

or Cl-containing native protein crystals. The strength of the

current approach, as described in x2, is that we merge and

group symmetry-equivalent re¯ections into centric and non-

centric subsets. Those merged re¯ections in the centric subset

that are equal in theory in the past have been merged into the

same unique re¯ections by most data-processing programs,

but we treat them as separate re¯ections and preserve them as

`internal probes' for noise level. To our best knowledge, this

approach has not been applied in addressing the signal-to-

noise ratio in anomalous scattering data. Here, we compare

the statistics for the centric and non-centric subsets and this is

the basis for our proposed Ras.

Unlike �2, I/�(I), Rmeas or similar measures, Ras directly

deals with Bijvoet differences (the anomalous signal) and

unlike Ranom or the �R plot it evaluates both signal and noise.

Test results show that predictions based on Ras are in better

agreement with the trends observed in SHELXD correlation

coef®cients than those predicted using the XPREP indicators

SN1, SN2 or anomalous differences (�a), the only other

quantitative indicators of anomalous signal-to-noise ratio

currently in use. Test results also indicate that Ras can be used
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Figure 4
A representative section of electron density shown with XTALVIEW
(McRee, 1992), centered on Leu11B of the Zn-free insulin structure,
together with the re®ned insulin coordinates from the Protein Data Bank
(Bernstein et al., 1977) entry 9ins. The map is calculated using phases
derived by ISAS2001 from the 60� data set to 2.58 AÊ resolution.



research papers

506 Fu et al. � Anomalous scattering signal and noise levels Acta Cryst. (2004). D60, 499±506

to judge the `useful' resolution of a data set for producing

interpretable electron-density maps.

Since the proposed Ras index provides an effective way to

quantitatively evaluate the anomalous signal-to-noise ratio in

X-ray diffraction experiments, we propose that Ras be used in

data-processing programs to provide an early indication of the

quality of the anomalous scattering data, in particular as a

quantitative measurement of the signal-to-noise ratio in the

data.

A more reliable evaluation of data quality and data suf®-

ciency will also help in decision-making. Thus, Ras-assisted

decision-making could be very useful to the automation of

data collection and structural analysis that is becoming more

and more important in the era of structural genomics. For

example, there is always the question whether the data quality

will be improved if more observations are available owing to

increased redundancy. In reality, collecting more and more

data from the same crystal may not improve the data quality as

expected intuitively because of the possibility of radiation

damage. A reliable signal and noise evaluation index such as

Ras described here could help to answer this and other related

questions that arise during data acquisition. It is totally

feasible that by using a robot with multiple crystals one could

de®ne a preset signal-to-noise target level in the data and

using Ras to monitor data collection determine when a fresh

crystal is needed and when this level has been reached. If this

preset signal-to-noise level represents the minimum value

required for solving a structure, then one will have a set of

data that will most likely be accurate enough to solve the

target structure.
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